Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Children (Basel) ; 11(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275444

RESUMO

OBJECTIVES: Septic arthritis (SA) is a serious bacterial infection that must be treated efficiently and timely. The large number of culture-negative cases makes local epidemiological data important. Accordingly, this study aimed to evaluate the etiology, clinical characteristics, and therapeutic approach of SA in children in Turkiye, emphasizing the role of real-time polymerase chain reaction (PCR) techniques in the diagnosis. METHODS: In this multi-center, prospective study, children hospitalized due to SA between February 2018 and July 2020 in 23 hospitals in 14 cities in Turkiye were included. Clinical, demographic, laboratory, and radiological findings were assessed, and real-time PCR was performed using synovial fluid samples. RESULTS: Seventy-five children aged between 3 and 204 months diagnosed with acute SA were enrolled. Joint pain was the main complaint at admission, and the most commonly involved joints were the knees in 58 patients (77.4%). The combination of synovial fluid culture and real-time PCR detected causative bacteria in 33 patients (44%). In 14 (18.7%) patients, the etiological agent was demonstrated using only PCR. The most commonly isolated etiologic agent was Staphylococcus aureus, which was detected in 22 (29.3%) patients, while Streptococcus pyogenes was found in 4 (5.3%) patients and Kingella kingae in 3 (4%) patients. Streptococcus pyogenes and Kingella kingae were detected using only PCR. Most patients (81.3%) received combination therapy with multiple agents, and the most commonly used combination was glycopeptides plus third-generation cephalosporin. CONCLUSIONS: Staphylococcus aureus is the main pathogen in pediatric SA, and with the use of advanced diagnostic approaches, such as real-time PCR, the chance of diagnosis increases, especially in cases due to Kingella kingae and Streptococcus pyogenes.

2.
Immunol Res ; 72(1): 50-71, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37642808

RESUMO

Thrombotic events associated with SARS-CoV-2 at the vascular endothelium still remains unclear. The aim of the current study is to determine the relationship between cellular proteins on the (ocular) vascular endothelial surface and the immune thrombotic and/or endotheliopathy process elicited by SARS-CoV-2 using an in-silico modeling. The structural S (spike glycoprotein), N (nucleocapsid protein), M (membrane protein), and E (envelope protein) proteins, an accessory protein (ORF1ab) of SARS-CoV-2 and 158 cellular proteins associated with retinal vascular endothelial cell surface or structure were included in this study for comparison of three-dimensional (3D) structure and sequence. Sixty-nine of the retinal proteins were obtained from the Uniprot database. Remaining proteins not included in the database were included in the study after they were converted into 3D structures using the RaptorX web tool. Sequence and three-dimensional structure of SARS-COV-2 S, N, M, E, ORF1ab proteins and retinal vascular endothelial proteins were compared with mTM-align server. Proteins with significant similarity (score above 0.5) were validated with the TM-align web server. Immune and thrombosis-related protein-receptor interactions of similar proteins was checked with CABS-dock. We detected a high level of structural similarity between E protein and ACE, ACE2, LAT1, and TM9SF4 endothelial proteins. In addition, PECAM-1 was found to be structurally similar to ORF1ab and S protein. When we evaluated the likelihood/potential to stimulate an immune responses/a cytokine release, TLR-2 and TLR-3, which are highly susceptible to SARS-CoV2, showed a potential receptor-protein interaction with retinal vascular endothelial proteins. Our study demonstrates that SARS-CoV-2 proteins may have structural similarities with vascular endothelial proteins, and therefore, as immunological target sites, the counterpart proteins on the endothelial surface of many organs may also be secondarily affected by any immune response against SARS-CoV-2 structural proteins.


Assuntos
COVID-19 , Trombose , Humanos , SARS-CoV-2 , Células Endoteliais , RNA Viral , Simulação por Computador , Imunidade , Proteínas de Membrana
3.
Comput Biol Chem ; 107: 107961, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788543

RESUMO

COVID-19, caused by infection with the SARS-CoV-2 has become a global health problem due to significant mortality rates; the exact pathophysiological mechanism remains uncertain. Articles reporting patient data are quite heterogeneous and have several limitations. Surviving patients develop a CD4 and CD8 T-cell response to the virus SARS-CoV-2 during COVID-19. Interestingly, pre-existing virus-reactive T-cells have been found in patients that were not infected before, suggesting some form of cross-reactivity or immunological mimicry. To better understand this phenomenon, we performed a bioinformatic study, which was aimed to identify antigenic structures that may explain the presence of such "reactive" T-cells, which may support or modulate the immune response to SARS-CoV-2 infections. Seven different common environmental allergen epitopes identical to the SARS-CoV-2 S-protein were identified that share affinity to 8 MHCI-specific epitope regions. Pollen showed the greatest similarity with the S protein epitope. In the epitope similarity analysis between the S protein and MHC-II / T helper epitopes, the highest similarity was determined for mites. When S-protein that stimulates B cells and identical epitope antigens are examined, the most common allergens were hornbeam and wheat. The high epitope similarity observed for the allergens examined and S protein epitopes suggest that these allergens may be a reason for pre-existing SARS-CoV-2 - reactive T-cells in previously non-infected subjects and such a previous exposure may affect the course of the disease in COVID-19 infection. It remains to be determined whether such a previous existence of SARS-CoV-2 reactive cells can support the clearance of the virus or if they, in contrast, may even aggravate the disease course. (Table 4, Ref 54).


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Epitopos de Linfócito T , Imunidade , Alérgenos , Biologia Computacional
4.
Int Ophthalmol ; 43(12): 5055-5062, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847479

RESUMO

PURPOSE: To investigate the presence of ACE2, TMPRSS2 and Furin, i.e., a key player in the ocular infection with SARS-COV-2, in surgically obtained human retinal tissue samples from SARS-CoV-2-negative patients, using gene expression analysis. METHODS: The mechanisms and entry paths of ocular infections have been ill-defined so far. To better understand the possible entry routes, we used surgically explanted retinal tissue from nine patients that were not infected with SARS-CoV-2 and analyzed the message expression of the three key molecules that confer viral entry into cells using polymerase chain reaction. RESULTS: The median age of the patients (n = 9) included in the study was 52 years (IQR 48, 55). Eight patients underwent surgery for rhegmatogenous retinal detachment and one patient for tractional retinal detachment. Gene expression for the proteins studied was detected in all nine patients. The results of analysis by Livak's method (2001) demonstrated a median TMPRSS2 gene expression value of 20.9 (IQR 11.7, 33.7), a median ACE2 gene expression value of 2.09 (IQR 1.14, 2.79) and a median Furin gene expression value of 8.33 (IQR 5.90, 11.8). CONCLUSION: In conclusion, TMPRSS2, Furin and ACE2 are expressed in the retina and may contribute to the retinal involvement in COVID-19 patients. Expression may vary among individuals, which may explain why some patients may be more prone to retinal involvement during SARS-CoV-2 infection COVID-19 patients than others. Variability in the expression of TMPRSS2, Furin and ACE2 proteins themselves may also explain the presence or development of retinal symptoms of varying severity.


Assuntos
COVID-19 , Descolamento Retiniano , Humanos , SARS-CoV-2 , Furina/genética , Furina/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Biópsia , Retina/metabolismo
5.
Microorganisms ; 11(8)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630655

RESUMO

Introduction: While there is a significant amount of information about invasive meningococcal disease (IMD), meningococcal carriage, and meningococcal vaccines in children and adolescents, data in older adults are limited. Studies of meningococcal carriage and transmission modeling can be utilized to predict the spread of IMD and guide prevention and treatment strategies. Our study's main objective was to assess the prevalece of Neisseria meningitidis (Nm) carriage, serogroup distribution, and associated risk factors among older adults in Türkiye. Methods: Nasopharyngeal samples were collected between December 2022 and January 2023 from a total of 329 older adults (65 years of age and above). The samples were tested via PCR for Nm, and a serogroup (A, B, C, Y, W, X, E, Z, H) analysis of the positive samples was performed. Results: In total, 329 adults over 65 years of age (150 females and 179 males; 69% were 65-75 years old and 31% were 75 years of age and older) were included in the study. Nm carriage was detected in 46 participants (13.9%), and the serogroup distribution was as follows: 2.4% MenY (n = 8), 1.8% MenB (n = 6), 0.2% MenW (n = 2), and 9.4% non-groupable (n = 31). Other serogroups were not detected. Between the meningococcal carriers and the non-carriers, there were no differences between previous vaccination histories (meningococcal, pneumococcal, influenza, and COVID-19), travel history for Hajj and/or Umrah, and the presence of chronic disease. Of the 16 cases positive for the serogroups Y, B, and W, 13 patients were between the ages of 65 and 74 and three patients were over 75 years old, and these three cases represented MenY. Conclusion: In our study, the percentage of meningococcal carriage was found to be 13.9%, the carriage rate for encapsulated strains was 4.8%, and the most common serogroup was MenY. Men Y was also the only serogroup detected in patients over 75 years of age. The MenY serogroup, which is one of the most important causes of IMD (especially in pneumonia cases) in people older than 65 years, was the most frequently carried serogroup in people over 65 years of age in our study. Adequate surveillance and/or a proper carriage study would help to define potential vaccination strategies for older adults.

7.
Eur J Pediatr ; 181(8): 3175-3191, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35585256

RESUMO

Microbiota composition may play a role in the development, prognosis, or post-infection of COVID-19. There are studies evaluating the microbiota composition at the time of diagnosis and during the course of COVID-19, especially in adults, while studies in children are limited and no study available in children with multisystem inflammatory syndrome in children (MIS-C). This study was planned to compare intestinal microbiota composition in children diagnosed with MIS-C and acute COVID-19 infection with healthy children. In this prospective multicenter study, 25 children diagnosed with MIS-C, 20 with COVID-19 infection, and 19 healthy children were included. Intestinal microbiota composition was evaluated by 16 s rRNA gene sequencing. We observed changes of diversity, richness, and composition of intestinal microbiota in MIS-C cases compared to COVID-19 cases and in the healthy controls. The Shannon index was higher in the MIS-C group than the healthy controls (p < 0.01). At phylum level, in the MIS-C group, a significantly higher relative abundance of Bacteroidetes and lower abundance of Firmicutes was found compared to the control group. Intestinal microbiota composition changed in MIS-C cases compared to COVID-19 and healthy controls, and Faecalibacterium prausnitzii decreased; Bacteroides uniformis, Bacteroides plebeius, Clostridium ramosum, Eubacterium dolichum, Eggerthella lenta, Bacillus thermoamylovorans, Prevotella tannerae, and Bacteroides coprophilus were dominant in children with MIS-C. At species level, we observed decreased Faecalibacterium prausnitzii, and increased Eubacterium dolichum, Eggerthella lenta, and Bacillus thermoamylovorans in children with MIS-C and increased Bifidobacterium adolescentis and Dorea formicigenerasus in the COVID-19 group. Our study is the first to evaluate the microbiota composition in MIS-C cases. There is a substantial change in the composition of the gut microbiota: (1) reduction of F. prausnitzii in children with MIS-C and COVID-19; (2) an increase of Eggerthella lenta which is related with autoimmunity; and (3) the predominance of E. dolichum is associated with metabolic dysfunctions and obesity in children with MIS-C. CONCLUSIONS:  Alterations of the intestinal microbiota might be part of pathogenesis of predisposing factor for MIS-C. It would be beneficial to conduct more extensive studies on the cause-effect relationship of these changes in microbiota composition and their effects on long-term prognosis. WHAT IS KNOWN: • Microbiota composition may play a role in the development, prognosis, or post-infection of COVID-19.  • However, the number of studies on children is limited, and no study on multisystem inflammatory syndrome in children is currently available (MIS-C). WHAT IS NEW: • In individuals with MIS-C, the composition of the gut microbiota changed dramatically. • Decreased Faecalibacterium prausnitzii have been observed, increased Eggerthella lenta, which was previously linked to autoimmunity, and predominance of Eubacterium dolichum which was linked to metabolic dysfunction and obesity.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Obesidade Pediátrica , Actinobacteria , Adulto , Bacillus , COVID-19/complicações , Criança , Fezes/microbiologia , Firmicutes , Microbioma Gastrointestinal/genética , Humanos , Estudos Prospectivos , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica
8.
Children (Basel) ; 8(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34682136

RESUMO

Meningococcal carriage studies and transmission modeling can predict IMD epidemiology and used to define invasive meningococcal disease (IMD) control strategies. In this multicenter study, we aimed to evaluate the prevalence of nasopharyngeal Neisseria meningitidis (Nm) carriage, serogroup distribution, and related risk factors in Turkey. Nasopharyngeal samples were collected from a total of 1267 children and adolescents and were tested with rt-PCR. Nm carriage was detected in 96 participants (7.5%, 95% CI 6.1-9.0), with the peak age at 13 years (12.5%). Regarding age groups, Nm carriage rate was 7% in the 0-5 age group, was 6.9%in the 6-10 age group, was 7.9% in the 11-14 age group, and was 9.3% in the 15-18 age group. There was no statistically significant difference between the groups (p > 0.05). The serogroup distribution was as follows: 25% MenX, 9.4% MenA, 9.4% MenB, 2.1% MenC, 3.1% MenW, 2.1% for MenY, and 48.9% for non-groupable. The Nm carriage rate was higher in children with previous upper respiratory tract infections and with a high number of household members, whereas it was lower in children with antibiotic use in the last month (p < 0.05 for all). In this study, MenX is the predominant carriage strain. The geographical distribution of Nm strains varies, but serogroup distribution in the same country might change in a matter of years. Adequate surveillance and/or a proper carriage study is paramount for accurate/dynamic serogroup distribution and the impact of the proposed vaccination.

9.
Exp Eye Res ; 203: 108433, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33400927

RESUMO

Although severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) infection have emerged globally, findings related to ocular involvement and reported cases are quite limited. Immune reactions against viral infections are closely related to viral and host proteins sequence similarity. Molecular Mimicry has been described for many different viruses; sequence similarities of viral and human tissue proteins may trigger autoimmune reactions after viral infections due to similarities between viral and human structures. With this study, we aimed to investigate the protein sequence similarity of SARS CoV-2 with retinal proteins and retinal pigment epithelium (RPE) surface proteins. Retinal proteins involved in autoimmune retinopathy and retinal pigment epithelium surface transport proteins were analyzed in order to infer their structural similarity to surface glycoprotein (S), nucleocapsid phosphoprotein (N), membrane glycoprotein (M), envelope protein (E), ORF1ab polyprotein (orf1ab) proteins of SARS CoV-2. Protein similarity comparisons, 3D protein structure prediction, T cell epitopes-MHC binding prediction, B cell epitopes-MHC binding prediction and the evaluation of the antigenicity of peptides assessments were performed. The protein sequence analysis was made using the Pairwise Sequence Alignment and the LALIGN program. 3D protein structure estimates were made using Swiss Model with default settings and analyzed with TM-align web server. T-cell epitope identification was performed using the Immune Epitope Database and Analysis (IEDB) resource Tepitool. B cell epitopes based on sequence characteristics of the antigen was performed using amino acid scales and HMMs with the BepiPred 2.0 web server. The predicted peptides/epitopes in terms of antigenicity were examined using the default settings with the VaxiJen v2.0 server. Analyses showed that, there is a meaningful similarities between 6 retinal pigment epithelium surface transport proteins (MRP-4, MRP-5, RFC1, SNAT7, TAUT and MATE) and the SARS CoV-2 E protein. Immunoreactive epitopic sites of these proteins which are similar to protein E epitope can create an immune stimulation on T cytotoxic and T helper cells and 6 of these 9 epitopic sites are also vaxiJen. These result imply that autoimmune cross-reaction is likely between the studied RPE proteins and SARS CoV-2 E protein. The structure of SARS CoV-2, its proteins and immunologic reactions against these proteins remain largely unknown. Understanding the structure of SARS CoV-2 proteins and demonstration of similarity with human proteins are crucial to predict an autoimmune response associated with immunity against host proteins and its clinical manifestations as well as possible adverse effects of vaccination.


Assuntos
Sequência de Aminoácidos , Doenças Autoimunes/virologia , Proteínas do Olho/química , Doenças Retinianas/virologia , SARS-CoV-2/química , Homologia de Sequência , Proteínas Virais/química , COVID-19/epidemiologia , Biologia Computacional , Proteínas do Envelope de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/química , Infecções Oculares Virais/virologia , Humanos , Glicoproteínas de Membrana/química , Fosfoproteínas/química , Poliproteínas/química , Epitélio Pigmentado da Retina/química , Proteínas da Matriz Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...